heated very cautiously in an atmosphere of nitrogen, the yellow crystals sublime and reform in a cooler portion of the tube. Upon stronger heating, some disproportionation occurs and white crystals of chromium hexacarbonyl are observed further along the tube. Finally, complete decomposition results in the deposition of a metallic mirror of cadmium and chromium.

Acknowledgment.—We are indebted to Dr. Francis J. Norton, of the Research Laboratory of the General Electric Company, for preparing and interpreting mass spectra of our samples of chromium carbonyl, chromium carbonyl hydride, and products produced by spontaneous decomposition of the hydride upon standing at room temperatures.

DEPARTMENT OF CHEMISTRY YALE UNIVERSITY NEW HAVEN, CONNECTICUT

RECEIVED JUNE 8, 1951

Preparation of Some Sulfonium Salts as Possible Anticancer Agents

By Henry A. Rutter, Jr.1

The preparation of sulfonium halides as possible anticancer agents was prompted by the structural similarity between quadrivalent sulfonium compounds and quaternary ammonium derivatives.

Hartwell and Kornberg² prepared several aralkyl quaternary ammonium halides of the type I which had anticancer activity.

$$\left[Y-C \left\langle \begin{array}{c} C=C \\ C-C \end{array} \right\rangle C-CO-CH_2N^* \right]^+X^-$$

The nitrogen was contained in a heterocyclic ring such as pyridine or α -picoline.

In the present investigation a series of aralkyl sulfonium bromides of the type II were prepared by reaction of the appropriate phenacyl bromide with dialkyl sulfides according to the method of Bost and Schultze³ for the preparation of p-phenylphenacyl sulfonium bromides.

$$\left[\begin{array}{c} X-C & C=C \\ C-C & C-CO-CH_2S \\ \end{array}\right]^+ Br^-$$

where X is H, CH_3 , C_6H_5 , Br, Cl and CH_3O and R and R' are alkyl groups. In addition one metanitro derivative has been prepared.

These compounds are listed in Table I.

A preliminary report indicates that six of the phenacyl sulfonium bromides are somewhat effective as tumor necrotizing agents at dosages of

- (1) Taken from thesis submitted by Henry A. Rutter, Jr., in partial fulfillment of the requirements for the degree of Ph.D. at The Division of Chemistry, Graduate School, Georgetown University, Washington,
- (2) J. L. Hartweil and S. R. L. Kornberg, This Journal, 68, 868
 - (3) R. W. Bost and H. C. Schultze, ibid., 64, 1165 (1942).

TABLE I

PHENACYL AND SUBSTITUTED PHENACYL SULFONIUM BROMIDES

$$\begin{bmatrix} X-C & C-C & R' \\ C-C & C-CO-CH_2S & R \end{bmatrix}^+ Br^-$$
M.p., Bromide ion,

				Yield,	``°Ċ.'	%°-	
\mathbf{x}	R	R'	Formula	%	(uncor.)	Calcd.	Found
H	C ₂ H ₇	C ₈ H ₇	C14H21OSBr	13	93 -9 4	25.23	25.20
H	C ₄ H ₉	C ₄ H ₉	C16H25OSBr	23	88-89	23.18	22.90
H	C_4H_9	C_2H_4	C14H21OSBr	63	103-104	25.23	25.05
CH:	CH:	CH_{2}	C ₁₁ H ₁₈ OSBr	51	112	29.04	28.71
CH_{3}	C ₈ H ₇	C ₈ H ₇	C ₁₅ H ₂₅ OSBr	12	98-99	24.12	24.41
CH_{3}	C_4H_9	C_4H_9	C ₁₇ H ₂₇ OSBr	28	99-100	22.24	21.99
CH ₂	C_4H_8	C ₂ H ₅	C16H26OSBr	12	97	24.12	23.74
C_6H_5	C_2H_3	C ₂ H ₅	C ₁₈ H ₂₁ OSBr	31	123-124	21.9	21.47
C ₆ H ₅	C ₈ H ₇	C ₃ H ₇	C20H25OSBr	25	113-114	20.37	20.10
C ₆ H ₅	C_4H_9	C ₂ H ₅	C20H25OSBr	14	96-97	20.37	20.21
Br	CH ₃	CH3	C ₁₀ H ₁₂ OSBr ₂	53	127	23.52	23.31
Br	C ₂ H ₄	C ₂ H ₅	C12H16OSBr2	53	119-120	21.73	21.40
Br	C ₃ H ₇	C ₂ H ₇	C14H20OSBr2	49	107-108	20.20	19.9
C1	CH ₃	CH ₃	C ₁₀ H ₁₂ OSBrC1	27	128-129	27.0 3	27.14
C1	C ₈ H ₇	C ₈ H ₇	C14H20OSBrC1	29	111	22.72	22.85
C1	C_4H_9	C_4H_9	C16H24OSBrC1	21	99	21.04	20.88
C1	C_4H_9	C ₂ H ₅	C14H20OSBrC1	34	102-103	22.72	22.48
CH ₂ O	C ₂ H ₅	C ₂ H ₅	C11H19O1SBr	13	106-107	25.03	24.71
CH ₂ O	C ₈ H ₇	C ₈ H ₇	C15H22O2SBr	15	100	23.01	22.62
$m\text{-NO}_2$	C ₈ H ₇	C ₂ H ₇	C14H20NO3SBr	6	97-98	22.06	21.71

^a Mohr analysis, average of two.

150 to 250 mg. per kilogram of body weight against Sarcoma 37 in mice.⁴

Grateful acknowledgment is made to Dr. M. X. Sullivan for his advice and encouragement during this investigation.

(4) Acknowledgment is made to Dr. Jonathan L. Hartwell, National Cancer Institute, for the report on the tumor necrotizing activity of the compounds. The final report dealing with the biological activity of these compounds will be made later.

Chemo-Medical Research Institute Georgetown University Washington, D. C. Received June 25, 1951

Thiocarbamates. III. 1 Aryl Thiocarbamates from Aryl Thiocyanates

By R. RIEMSCHNEIDER, F. WOJAHN AND G. ORLICK²

As reported elsewhere, 1,8 the action of concentrated sulfuric acid followed by treatment with ice-water serves, in most cases, to transform aryl thiocyanates into the corresponding thiocarbamates

$$ArSCN \xrightarrow{+H_2O} ArSC \stackrel{OH}{\longleftrightarrow} ArSCO \cdot NH_2$$

The reaction is of preparative as well as of analytical value. We have found that the reaction is superior to older procedures for the preparation of thiocarbamates⁴ with respect to general applicability,

- (1) R. Riemschneider, Paper I, Mill. physiol. chem. Inst., R 30. Feb., 1949; Paper II, Chimica e industria (Milan), 23, 483 (1951) (presented Sept. 19, 1950, before the VI National Congress of Pure and Applied Chemistry, Milan).
- (2) Address of the authors: Hohenzollernplatz 1, Berlin-Nikolassee, (3) Pharmasie, 4, 460 (1949); Chim. et Ind., 64, Sonderheft, Sept., 99 (1950); Pharm. Zentralhalle, 89, 108 (1950); further references may be found in Paper I of this series.¹
- (4) H. L. Wheeler and B. Barnes, Am. Chem. J., 22, 141 (1899);
 A. Fleischer, Ber., 9, 988 (1876);
 N. A. Langlet, ibid., 24, 3848 (1891);
 B. Hohnberg, ibid., 47, 159 (1914);
 A. Knorr, ibid., 49, 1735 (1916);
 E. Biillmann and J. Bjerrum, ibid., 50, 503 (1917);
 M. H. Rivier, Bull. soc. chim., [4] 1, 733 (1907);
 R. Conrad and F. Salomon, J. prakt.

•					Derived ary1-thic	ocarbamates from aryl	l thiocyanates-		
Substituted phenyl th Derivative	iocyanates B.p. or m.p., b °C.	Yield, c %	$Solvents^d$	M.p., °C.	Crystal form	Formula	N ant Calcd.	dyses, % Found	Precipitate produced by alc. silver nitrate
Unsubstituted	$71-73(1.5)^a$	87	В	98°	Needles	C ₁ H ₁ NOS	9.15	9.14	Gelatinous
2-Methyl	$122.5(15.5)^a$	88	В	139	Tetrahedra	C_8H_9NOS	8.38	8.75	Cheesy
3 -Methy 1^f	$110-114(10)^a$	89	В	108.5	Rods	C_8H_9NOS	8.38	8.45	Yellow, flocculent
4-Methyl	$116-118(10)^a$	89	В	175 dec.	Rods, plates	C_8H_9NOS	8.38	8.40	Yellow-green, gelatinous
2-Chloro	g	88	\mathbf{T}	145	Needles	C7H6NOSC1	m		Gelatinous
3-Chloro	σ	87	T	145.5	Rosettes	C7H6NOSC1	n		Bright yellow, gelatinous
4-Chloro	36	95	${f B}$	176 dec.	Plates	C7H6NOSC1	9		Gelatinous
4-Bromo	55	100	BT	184 dec.	Plates	C ₇ H ₆ NOSBr	6.04	6.10	Gelatinous
4-Iodo	50.0-50.5	94	T	187 dec.	Scales	C7H6NOSJ	P		Flocculent
4-Cyano	127-128	85	Т	165 dec.	Lances	$\mathrm{C_8H_6N_2OS}^l$	q		Flocculent, finely divided
3-Nitro	49-51	98	Т	124	Yellow needles	$C_7H_6N_2O_3S$	r		Bright yellow, flocculent
4-Nitro	128-129	100	T	157 dec.	Needles	$C_7H_6N_2O_3S$	14.14	14.13	Yellow, flocculent
4-Hydroxy	56.057.5	45	\mathbf{DB}	172.5		$C_7H_7NO_2S$	8.28	8.15	Yellow, flocculent
4-Methoxy	33-34	59	$\mathbf{B}.\mathbf{L}$	131	Needles	$C_8H_9NO_2S$	7.65	8.06	Yellow-green, gelatinous
4-Ethoxy	46-47	73	В	127	Scales	$C_8H_{11}NO_2S$	7.10	7.35	Bright yellow, gelatinous
3-Carboxy ^f	178 dec.	87	\mathbf{Ph}^h	184 dec.	Microcrystalline	$C_8H_7NO_3S$	7.10	7.03	Flocculent
4-Carboxy ^f	195 dec.	77	\mathbf{Ph}^h	300^{i}	Not recognizable	$C_8H_7NO_3S$	7.10	6.71	Bright yellow, flocculent
4-Amino	57.0-57.5	67^{i}	\mathbf{BT}	131	Needles	$C_7H_8N_2OS$			Bright yellow, flocculent
4-N-Methylamino	43.0-43.5	73^i	$\mathbf{B}\mathbf{T}$	135	Needles	$C_8H_{10}N_2OS$	t		Yellow, flocculent
4-N,N-Dimethylamino	73-74	86^{i}	В	131.5	Needles	$C_9H_{12}N_2OS$	14.28	14.10	Orange, flocculent
4-N-Ethylamino	55-5 6	80^{i}	В	144	Needles	$C_9H_{12}N_2OS$	tř		Yellow, flocculent
4-N,N-Diethylamino	$138(1)^{a}$	87^{i}	\mathbf{BP}	108.5	Needles	$C_{11}H_{16}N_2OS$	12.49	12.89	Bright yellow, flocculent
3-Methyl-4-amino	68	72^{i}	\mathbf{BT}	136.5	Plates	$C_8H_{10}N_2OS$	15.37	15.41	Flocculent
2-Chloro-4-amino	75	82^{j}	${f T}$	145.5	Plates	C7H7N2OSC1	13.82	13.95	Bright yellow, flocculent
3-Chloro-4-aminof	61	77^{i}	\mathbf{BT}	159.5	Plates, needles	C7H7N2OSC1	13.82	14.13	Bright yellow, flocculent
3-Nitro-4-amino	113-114	93	$_{ m BN}$	176 dec.	Red rods, needles	$C_7H_7N_3O_3S$	19.71	19.66	Cherry-red, flocculent
3-Methoxy-4-amino	64	54^i	T	136		$C_8H_{10}N_2O_2S$	14.13	14.00	Yellow-green, flocculent
4-Thiocyano	107-108	93^{i}	k	199 dec.	Powdery	$C_8H_8N_2O_2S_2$	12.27	12.21	Bright yellow, cheesy
Appendix									
1-Naphthyl thiocyanate 1-(4-Aminonaphthyl) thio-	53	94	вт	135.5	Needles	$C_{11}H_9NOS$	v		Gelatinous
cyanate	146-147	72	\mathbf{T}	165	Crystalline	$\mathrm{C_{11}H_{10}N_{2}OS}$	12.84	12.80	Yellow, flocculent

yields obtained, and simplicity of operation. The reaction proved to be unsatisfactory in the cases of several o-substituted phenyl thiocyanates, e.g., the o-carboxyl-, o-methoxy- and o-nitro-derivatives; aryl thiocyanates sensitive to concentrated sulfuric acid, e.g., thiocyanophenols, also gave unfavorable results. Thus, the corresponding thiocarbamates are, in these cases, best prepared by one of the older procedures.⁴

Thirty aryl thiocarbamates have been prepared by the sulfuric acid method; descriptive and analytical data for these compounds are listed in the table I. The compounds give precipitates with alcoholic silver nitrate.

Experimental

The aryl thiocyanate $(2~\rm g.)$ is treated slowly with shaking, and with ice cooling, with 10 cc. of 95% sulfuric acid. The mixture is allowed to stand at 0° to 5° for 15 hours, and is poured on ice. The precipitate is collected, washed with water, and dried in air, or, in some cases, in vacuum with slight warming. If a high-boiling solvent, e.g. phenetole, is used for recrystallization, the solution should be heated for as brief a period as possible in order to avoid decomposition of the solutes. The procedure given has been applied to quantities up to 10 g. of aryl thiocyanate, with correspondingly increased volumes of sulfuric acid.

Chem., [2] 10, 28 (1874); M. Battegay and R. Krebs, Compt. rend., 206, 919 (1938); Badische Anilin und Soda Fabrik, A. G., German Patent 175,070; Chem. Zentr., 77, 1466 (1906).

CHEMICAL INSTITUTE OF THE FREE UNIVERSITY
BERLIN, GERMANY RECEIVED APRIL 9, 1951

New Benzimidazoles from Polyhydroxy Acids¹

By David A. Rosenfeld, James W. Pratt, Nelson K. Richtmyer and C. S. Hudson

Incidental to other researches now in progress we have prepared several benzimidazoles whose descriptions may well be presented together at this time. The first of these is derived from the condensation of o-phenylenediamine with p-glyceric acid. Although the benzimidazole from the simplest hydroxy acid, glycolic acid, has long been known, and that of the 3-desoxyglyceric, i.e., lactic acid even longer, a benzimidazole of a glyceric acid has not been reported previously.

In one of Griess and Harrow's classic papers⁴ on the action of aromatic diamines on sugars they included the reaction between D-glucose and 3,4-diaminotoluene acetate. The product crystallized as "small white warts" and from its composition is presumed to be identical¹ with the benzimidazole that we have now obtained by the condensation of D-gluconic acid with 3,4-diaminotoluene in the presence of concentrated hydrochloric acid by the procedure of Moore and Link.⁵ The melting point and specific rotation are here recorded for the first time.

Benzimidazoles derived from "L- α -rhamnohexonic" and "D- β -galaheptonic" acids are also de-

- (1) For a review of the 2-(aldo-polyhydroxyalkyl)-benzimidazotes see N. K. Richtmyer, Advances in Carbohydrate Chem., 6, 175 (1951).
- (2) A. Bistrzycki and G. Przeworski, Ber., 45, 3483 (1912).
- (3) M. Georgescu, *ibid.*, **25**, 952 (1892); see R. J. Dimler and K. P. Link, *J. Biol. Chem.*, **143**, 557 (1942), for those of the optically active forms.
 - (4) P. Griess and G. Harrow, Ber., 20, 2205 (1887).
 - (5) S. Moore and K. P. Link, J. Biol. Chem., 133, 293 (1940).

scribed. The rotations of these four new benzimidazoles are in accord with the "benzimidazole rule," which states⁶: "Whenever the hydroxyl group on the second (or alpha) carbon atom of an aldonic acid is on the right in the conventional projection formula of Fischer, the rotation of the derived benzimidazole is positive and, conversely, when the hydroxyl group is on the left, the rotation of the benzimidazole is negative."

Lohmar, Dimler, Moore and Link⁷ have prepared the dibenzimidazoles and the respective dihydrochlorides from galactaric (= mucic), D-glucaric (= D-saccharic) and D-mannaric (= D-mannosaccharic) acids. We have now extended this list, for purposes of characterization and identification, by adding data for the corresponding derivatives of L-threaric acid (= L(+)-tartaric acid, the ordinary dextrorotatory tartaric acid commonly present in grapes).

Experimental

2-(p-glycero-1,2-Dihydroxyethyl)-benzimidazole.—Two grams of calcium p-glycerate dihydrate, prepared from methyl α -D-mannopyranoside by periodate oxidation followed by bromine oxidation and subsequent hydrolysis as described by Jackson and Hudson, was refluxed for 3 hours with 1.6 g. of o-phenylenediamine in 40 ml. of 4 N hydrochloric acid by heating in an oil-bath kept at 130 \pm 5°. Because no crystallization occurred when the solution was made ammoniacal and concentrated, the product was isolated through its copper salt by the procedure of Moore and Link. The benzimidazole thus obtained weighed 0.70 g. (28%). It was recrystallized from a mixture of 30 parts of water and 5 parts of ethanol, forming slightly tan-colored needles with m.p. 184–186° (dec.) and $[\alpha]^{20}$ $+39.6^\circ$ in N hydrochloric acid (c 3.6).

Anal. Calcd. for $C_9H_{10}{\rm N}_2O_2\colon$ C, 60.66; H, 5.66; N, 15.72. Found: C, 60.78; H, 5.67; N, 15.54.

5-Methyl-2-(D-gluco-1,2,3,4,5-pentahydroxypentyl)-benzimidazole.—Calcium D-gluconate and 3,4-diaminotoluene dihydrochloride were condensed in the presence of a small excess of hydrochloric acid according to the general procedure of Moore and Link. The product, obtained in 70% yield, was recrystallized thrice from 15 parts of water as clusters of tiny needles which united to form larger masses of "warts," as Griess and Harrow had described them earlier. The benzimidazole melted at $212-214^{\circ}$ (dec.) and showed $[\alpha]^{20}D+9.2^{\circ}$ in N hydrochloric acid (c 2).

Anal. Calcd. for $C_{18}H_{18}N_2O_5$: C, 55.31; H, 6.43; N, 9.93. Found: C, 55.20; H, 6.44; N, 9.67.

2-(L-manno-L-gala-hepto-1,2,3,4,5-Pentahydroxyhexyl)-benzimidazole.—Crystalline "L- α -rhamnohexonic lactone" (=7-desoxy-L-manno-L-gala-heptonic lactone) was prepared by a modification of the method of Fischer and Tafel9 for the addition of hydrogen cyanide to L-rhamnose. A mixture of 5.6 g. of the lactone and 3.3 g. of o-phenylene-diamine was condensed in the presence of hydrochloric acid as catalyst according to the procedure of Moore and Link.5 The isolated benzimidazole weighed 4.5 g. (54%) and was purified by 3 recrystallizations, as needles, from 70 parts of 50% ethanol. It then melted at 266–268° (dec.) and had the rotation [α] ²⁰D -41.5° in N hydrochloric acid (c2.5).

Anal. Calcd. for $C_{13}H_{18}N_2O_5$: C, 55.31; H, 6.43; N, 9.93. Found: C, 55.37; H, 6.34; N, 9.88.

The same benzimidazole was obtained in 70% yield by the condensation of 2.7 g. (0.009 mole) of 7-desoxy-L-manno-L-gala-heptonic phenylhydrazide with 1.1 g. (0.01 mole) of o-phenylenediamine in a similar manner. The

(10) E. Fischer and F. Passmore, Ber., 22, 2728 (1889).

⁽⁶⁾ N. K. Richtmyer and C. S. Hudson, This Journal, **64**, 1612 (1942).

⁽⁷⁾ R. Lohmar, R. J. Dimler, S. Moore and K. P. Link, J. Biol. Chem., 143, 551 (1942).

⁽⁸⁾ E. L. Jackson and C. S. Hudson, This Journal, 59, 994 (1937).
(9) E. Fischer and J. Tafel, Ber., 21, 1657 (1888); see also E. L. Jackson and C. S. Hudson, This Journal, 56, 2455 (1934).